Interface SVDService
- All Known Implementing Classes:
SVDServiceImpl
public interface SVDService
Performs Singular value decomposition on experiment data to get eigengenes, and does comparison of those PCs to
factors recorded in the experimental design.
- Author:
- paul
-
Method Summary
Modifier and TypeMethodDescriptiongetImportantFactors
(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold) Obtain the SVD analysis for the given experiment, if it exists.Compare ExperimentalFactors and BioAssay.processingDates to the PCs.Compare ExperimentalFactors and BioAssay.processingDates to the PCs.getTopLoadedVectors
(ExpressionExperiment ee, int component, int count) boolean
Check if a dataset has a SVD analysis.Compute and update the SVD analysis fo the given experiment.
-
Method Details
-
getTopLoadedVectors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Map<ProbeLoading,DoubleVectorValueObject> getTopLoadedVectors(ExpressionExperiment ee, int component, int count) -
hasSvd
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) boolean hasSvd(ExpressionExperiment ee) Check if a dataset has a SVD analysis. -
getSvd
@Nullable @Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult getSvd(ExpressionExperiment ee) Obtain the SVD analysis for the given experiment, if it exists.If you only need to check if an SVD analysis exists, use
hasSvd(ExpressionExperiment)
instead as this method may retrieve a large matrix. -
svd
@Secured({"GROUP_USER","ACL_SECURABLE_EDIT"}) SVDResult svd(ExpressionExperiment ee) throws SVDException Compute and update the SVD analysis fo the given experiment.- Throws:
SVDException
-
getSvdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult getSvdFactorAnalysis(ExpressionExperiment ee) Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
ee
- the experiment- Returns:
- SVD VO
-
getSvdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult getSvdFactorAnalysis(PrincipalComponentAnalysis pca) Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
pca
- PCA- Returns:
- SVD VO
-
getImportantFactors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Set<ExperimentalFactor> getImportantFactors(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold) - Parameters:
ee
- the expression experimentexperimentalFactors
- to considerimportanceThreshold
- threshold for pvalue of association with factor. Suggested value might be 0.01.- Returns:
- factors which are "significantly" associated with one of the first three PCs
-