Class DoubleVectorValueObject
java.lang.Object
ubic.gemma.model.common.IdentifiableValueObject<DataVector>
ubic.gemma.model.expression.bioAssayData.DataVectorValueObject
ubic.gemma.model.expression.bioAssayData.DoubleVectorValueObject
- All Implemented Interfaces:
Serializable,Identifiable
- Direct Known Subclasses:
SlicedDoubleVectorValueObject
Value object for a
BulkExpressionDataVector containing doubles.- Author:
- paul
- See Also:
-
Field Summary
Fields inherited from class ubic.gemma.model.common.IdentifiableValueObject
id -
Constructor Summary
ConstructorsModifierConstructorDescriptionDoubleVectorValueObject(BulkExpressionDataVector dedv, ExpressionExperimentValueObject eevo, QuantitationTypeValueObject qtvo, BioAssayDimensionValueObject badVo, ArrayDesignValueObject advo, Collection<Long> genes) DoubleVectorValueObject(BulkExpressionDataVector dedv, ExpressionExperimentValueObject eevo, QuantitationTypeValueObject qtvo, BioAssayDimensionValueObject vectorsBadVo, ArrayDesignValueObject advo, Collection<Long> genes, BioAssayDimensionValueObject dimToMatch) Create a vector where we expect to have to create one or more gaps to match other vectors, defined by dimToMatch.protectedCopy constructor. -
Method Summary
Modifier and TypeMethodDescriptioncopy()Create a copy of this vector.booleandouble[]getData()The data of this vector.If this vector is associated to a statistical test (i.e.getRank()inthashCode()booleanisMasked()Indicate if this vector is "masked", i.e.booleanTrue if the data has been rearranged relative to the bioassay dimension (as a matter of practice the bioassay dimension should be set to null if it is not valid; this boolean is an additional check)voidsetData(double[] data) The data of this vector.voidsetMasked(boolean masked) Indicate if this vector is "masked", i.e.voidIf this vector is associated to a statistical test (i.e.voidvoidsetRankByMax(Double rankByMax) voidsetRankByMean(Double rankByMean) voidsetReorganized(boolean reorganized) True if the data has been rearranged relative to the bioassay dimension (as a matter of practice the bioassay dimension should be set to null if it is not valid; this boolean is an additional check)Crate a vector that is a slice of this one.double[]toString()Methods inherited from class ubic.gemma.model.expression.bioAssayData.DataVectorValueObject
getBioAssayDimension, getBioAssays, getDesignElement, getExpressionExperiment, getGenes, getQuantitationType, setBioAssayDimension, setDesignElement, setExpressionExperiment, setGenes, setQuantitationTypeMethods inherited from class ubic.gemma.model.common.IdentifiableValueObject
canEqual, getId, setId
-
Constructor Details
-
DoubleVectorValueObject
public DoubleVectorValueObject() -
DoubleVectorValueObject
public DoubleVectorValueObject(BulkExpressionDataVector dedv, ExpressionExperimentValueObject eevo, QuantitationTypeValueObject qtvo, BioAssayDimensionValueObject badVo, ArrayDesignValueObject advo, @Nullable Collection<Long> genes) - See Also:
-
DoubleVectorValueObject
public DoubleVectorValueObject(BulkExpressionDataVector dedv, ExpressionExperimentValueObject eevo, QuantitationTypeValueObject qtvo, BioAssayDimensionValueObject vectorsBadVo, ArrayDesignValueObject advo, @Nullable Collection<Long> genes, BioAssayDimensionValueObject dimToMatch) Create a vector where we expect to have to create one or more gaps to match other vectors, defined by dimToMatch.- Parameters:
dedv- dedveevo- a VO for the experimentqtvo- a VO for the quantitation typevectorsBadVo- BA dimension vogenes- a collection of gene IDs that correspond to the design element of this vector, or null to ignoredimToMatch- ensure that the vector missing values to match the locations of any bioassays in dimToMatch that aren't in the dedv's bioAssayDimension.dimToMatch- a dimension that the data should be aligned with, this will result in "gaps" where the provided vector is lacking assays
-
DoubleVectorValueObject
Copy constructor.
-
-
Method Details
-
equals
- Overrides:
equalsin classDataVectorValueObject
-
hashCode
public int hashCode()- Overrides:
hashCodein classDataVectorValueObject
-
copy
Create a copy of this vector.Use this if you intend to modify it as the original might be stored in a shared cache.
-
slice
public SlicedDoubleVectorValueObject slice(ExpressionExperimentSubsetValueObject subset, BioAssayDimensionValueObject bad) Crate a vector that is a slice of this one.Create a vector that is a slice of another one. The bioassays chosen are as given in the supplied bioassay dimension.
- Parameters:
subset- a subset by which we are slicingbad- all we nee is the id, the name and the list of bioassays from this.S
-
standardize
public double[] standardize()- Returns:
- data adjusted to mean 0, variance 1.
-
getData
public double[] getData()The data of this vector. -
isMasked
public boolean isMasked()Indicate if this vector is "masked", i.e. it is processed. -
isReorganized
public boolean isReorganized()True if the data has been rearranged relative to the bioassay dimension (as a matter of practice the bioassay dimension should be set to null if it is not valid; this boolean is an additional check) -
getRank
-
getRankByMax
-
getRankByMean
-
getPvalue
If this vector is associated to a statistical test (i.e. from a DE analysis), this is the P-value. -
setData
public void setData(double[] data) The data of this vector. -
setMasked
public void setMasked(boolean masked) Indicate if this vector is "masked", i.e. it is processed. -
setReorganized
public void setReorganized(boolean reorganized) True if the data has been rearranged relative to the bioassay dimension (as a matter of practice the bioassay dimension should be set to null if it is not valid; this boolean is an additional check) -
setRank
-
setRankByMax
-
setRankByMean
-
setPvalue
If this vector is associated to a statistical test (i.e. from a DE analysis), this is the P-value. -
toString
- Overrides:
toStringin classDataVectorValueObject
-