Interface SVDServiceHelper
-
- All Known Implementing Classes:
SVDServiceHelperImpl
public interface SVDServiceHelper
Performs Singular value decomposition on experiment data to get eigengenes, and does comparison of those PCs to factors recorded in the experimental design.- Author:
- paul
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description Set<ExperimentalFactor>
getImportantFactors(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold)
Map<ProbeLoading,DoubleVectorValueObject>
getTopLoadedVectors(ExpressionExperiment ee, int component, int count)
boolean
hasPca(ExpressionExperiment ee)
SVDResult
retrieveSvd(ExpressionExperiment ee)
SVDResult
svd(ExpressionExperiment ee)
SVDResult
svdFactorAnalysis(PrincipalComponentAnalysis pca)
Compare ExperimentalFactors and BioAssay.processingDates to the PCs.SVDResult
svdFactorAnalysis(ExpressionExperiment ee)
Compare ExperimentalFactors and BioAssay.processingDates to the PCs.
-
-
-
Method Detail
-
retrieveSvd
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult retrieveSvd(ExpressionExperiment ee)
-
svd
@Secured({"GROUP_USER","ACL_SECURABLE_EDIT"}) SVDResult svd(ExpressionExperiment ee) throws SVDException
- Throws:
SVDException
-
getTopLoadedVectors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Map<ProbeLoading,DoubleVectorValueObject> getTopLoadedVectors(ExpressionExperiment ee, int component, int count)
-
hasPca
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) boolean hasPca(ExpressionExperiment ee)
-
getImportantFactors
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) Set<ExperimentalFactor> getImportantFactors(ExpressionExperiment ee, Collection<ExperimentalFactor> experimentalFactors, Double importanceThreshold)
- Parameters:
experimentalFactors
- to considerimportanceThreshold
- threshold for pvalue of association with factor. Suggested value might be 0.01.ee
- the expression experiment- Returns:
- factors which are "significantly" associated with one of the first three PCs
-
svdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult svdFactorAnalysis(PrincipalComponentAnalysis pca)
Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
pca
- PCA- Returns:
- SVD VO
-
svdFactorAnalysis
@Secured({"IS_AUTHENTICATED_ANONYMOUSLY","ACL_SECURABLE_READ"}) SVDResult svdFactorAnalysis(ExpressionExperiment ee)
Compare ExperimentalFactors and BioAssay.processingDates to the PCs.- Parameters:
ee
- the experiment- Returns:
- SVD VO
-
-